
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
Model developer: Meta
Model Architecture: Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
Training Data | Params | Input modalities | Output modalities | Context length | GQA | Token count | Knowledge cutoff | |
Llama 3.1 (text only) | A new mix of publicly available online data. | 8B | Multilingual Text | Multilingual Text and code | 128k | Yes | 15T+ | December 2023 |
70B | Multilingual Text | Multilingual Text and code | 128k | Yes | ||||
405B | Multilingual Text | Multilingual Text and code | 128k | Yes |
Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
Llama 3.1 family of models. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
Model Release Date: July 23, 2024.
Status: This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
License: A custom commercial license, the Llama 3.1 Community License, is available at: https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here.
Note: This table showed source model instead of quantized model evaluation. Source Model Evaluation refer to Meta-Llama-3.1-8B-Instruct Evaluation Result
Category | Benchmark | # Shots | Metric | Llama 3 8B Instruct | Llama 3.1 8B Instruct | Llama 3 70B Instruct | Llama 3.1 70B Instruct | Llama 3.1 405B Instruct |
General | MMLU | 5 | macro_avg/acc | 68.5 | 69.4 | 82.0 | 83.6 | 87.3 |
MMLU (CoT) | 0 | macro_avg/acc | 65.3 | 73.0 | 80.9 | 86.0 | 88.6 | |
MMLU-Pro (CoT) | 5 | micro_avg/acc_char | 45.5 | 48.3 | 63.4 | 66.4 | 73.3 | |
IFEval | 76.8 | 80.4 | 82.9 | 87.5 | 88.6 | |||
Reasoning | ARC-C | 0 | acc | 82.4 | 83.4 | 94.4 | 94.8 | 96.9 |
GPQA | 0 | em | 34.6 | 30.4 | 39.5 | 41.7 | 50.7 | |
Code | HumanEval | 0 | pass@1 | 60.4 | 72.6 | 81.7 | 80.5 | 89.0 |
MBPP ++ base version | 0 | pass@1 | 70.6 | 72.8 | 82.5 | 86.0 | 88.6 | |
Multipl-E HumanEval | 0 | pass@1 | - | 50.8 | - | 65.5 | 75.2 | |
Multipl-E MBPP | 0 | pass@1 | - | 52.4 | - | 62.0 | 65.7 | |
Math | GSM-8K (CoT) | 8 | em_maj1@1 | 80.6 | 84.5 | 93.0 | 95.1 | 96.8 |
MATH (CoT) | 0 | final_em | 29.1 | 51.9 | 51.0 | 68.0 | 73.8 | |
Tool Use | API-Bank | 0 | acc | 48.3 | 82.6 | 85.1 | 90.0 | 92.0 |
BFCL | 0 | acc | 60.3 | 76.1 | 83.0 | 84.8 | 88.5 | |
Gorilla Benchmark API Bench | 0 | acc | 1.7 | 8.2 | 14.7 | 29.7 | 35.3 | |
Nexus (0-shot) | 0 | macro_avg/acc | 18.1 | 38.5 | 47.8 | 56.7 | 58.7 | |
Multilingual | Multilingual MGSM (CoT) | 0 | em | - | 68.9 | - | 86.9 | 91.6 |
Users can run large language models on Qualcomm chips using either of the following methods:
Run large models with APLUX AidGen: Please refer to the APLUX AidGen Developer Documentation
Run large models with Qualcomm Genie: Please refer to the Qualcomm Genie Documentation