YOLOv11n-INT8
目标检测
INT8

YOLOv11n:目标检测
YOLO11建立在YOLOv9和YOLOv10的基础上,整合了改进的模型结构设计、增强的特征提取技术和优化的训练方法。真正让YOLO11脱颖而出的是它令人印象深刻的速度、准确性和效率的结合,使其成为Ultralytics迄今为止创造的最强大的型号之一。通过改进设计,YOLO11提供了更好的特征提取,这是从图像中识别重要模式和细节的过程,即使在具有挑战性的场景中,也可以更准确地捕捉复杂的方面。
源模型
- 输入尺寸: 640x640
- 参数量: 2.50M
- 模型大小: 10.21M
- 输出尺寸:1x84x8400
源模型仓库:YOLOv11n
性能参考
设备
AI框架
数据精度
推理耗时
精确度损失
模型大小
模型转换
当用户对源模型进行过微调,需要重新进行模型转换。
用户可以自行参考以下两种方式完成模型转换:
使用 AIMO 完成模型转换:在右侧性能参考板块中点击模型转换参考查看模型转换步骤
使用高通 QNN 完成模型转换:请参考 Qualcomm QNN 文档
模型推理
Model Farm 所提供的模型性能基准测试以及示例代码皆基于阿加犀AidLite SDK 实现。
对于模型文件格式为 .bin
的模型,可以使用以下两种推理引擎完成模型在高通芯片上推理:
使用 APLUX AidLite 推理:详情请参考 APLUX AidLite 开发者文档
使用 Qualcomm QNN 推理:请参考 Qualcomm QNN 文档
推理示例代码
推理示例代码是基于 AidLite SDK 实现
点击模型 & 代码下载模型文件和推理代码包,文件结构如下
/model_farm_{model_name}_aidlite
|__ models # folder where model files are stored
|__ python # aidlite python model inference example
|__ cpp # aidlite cpp model inference example
|__ README.md
性能参考
设备
AI框架
数据精度
推理耗时
精确度损失
模型大小